Abstract

We present a new thermodynamic integration method that directly connects the liquid and the solid phases of a binary mixture by a reversible path. The states along the path are simulated in the isothermal-isobaric semigrand canonical ensemble, in which temperature, pressure, the total number of particles, and the fugacity fractions of the components are held fixed. The thermodynamic integration yields the chemical-potential difference between the two phases for one of the components and this information is then used to locate the solid-liquid coexistence points. The melting temperatures predicted by our method agree well with those predicted by the Gibbs-Duhem integration for a truncated and shifted Lennard-Jones system with a cutoff radius of 2.5sigma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call