Abstract

To achieve a cost-effective bioconversion of lignocellulosic materials, a novel xylose/glucose co-fermentation process by co-culture of cellulose-utilizing recombinant Saccharomyces cerevisiae (S. cerevisiae) and xylan-utilizing recombinant Pichia pastoris (P. pastoris) was developed, in which ethanol was produced directly from wheat straw without additional hydrolytic enzymes. Recombinant S. cerevisiae coexpressing three types of cellulase and recombinant P. pastoris coexpressing two types of xylanase were constructed, respectively. All cellulases and xylanases were successfully expressed and similar extracellular activity was demonstrated. The maximum ethanol concentration of 32.6gL-1 with the yield 0.42gg-1 was achieved from wheat straw corresponding to 100gL-1 of total sugar after 80h co-fermentation, which corresponds to 82.6% of the theoretical yield. These results demonstrate that the direct and efficient ethanol production from lignocellulosic materials is accomplished by simultaneous saccharification (cellulose and hemicellulose) and co-fermentation (glucose and xylose) with the co-culture of the two recombinant yeasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.