Abstract

The calmodulin-dependent adenylate cyclase domain (Cya) of the Bordetella pertussis cyclolysin was used as a reporter protein to study the direct translocation of the Xanthomonas effector protein, AvrBs2, into the plant host cell. Adenylate cyclase activity (production of cAMP) depends on the presence of eukaryotic plant calmodulin and is only active after translocation from the prokaryotic cell into the eukaryotic plant cell. Here, we show that infection of pepper plants by Xanthomonas campestris pv. vesicatoria strains expressing the AvrBs2:Cya fusion protein results in detectable increases of cAMP levels in plant cells as early as 3 h after inoculation. Adenylate cyclase activity was shown to be type III secretion-dependent as the Xanthomonas hrp mutations, hrcV or hrpF, failed to produce detectable levels of cAMP in infected pepper plants. Furthermore, the N-terminal secretion and translocation signals of AvrBs2 were shown to be required for activity of the fusion protein in the plant. A single genomic copy of the avrBs2:cya fusion gene expressed under the control of the wild-type avrBs2 promoter was used to compare the effect of a susceptible and resistant plant interaction on the kinetics of effector protein delivery. Implications of these results and additional applications of this reporter construct are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.