Abstract

Halomonas titanicae KHS3, isolated from a hydrocarbon-contaminated sea harbor in Argentina, is able to grow on aromatic hydrocarbons and displays chemotaxis toward those compounds. This behavior might contribute to the efficiency of its degradation capacity. Using high throughput screening, we identified two chemoreceptors (Htc1 and Htc2) that bind benzoate derivatives and other organic acids. Whereas Htc1 has a high affinity for benzoate (Kd 112µM) and 2-hydroxybenzoate (Kd 83µM), Htc2 binds 2-hydroxybenzoate with low affinity (Kd 3.25mM), and also C3/C4 dicarboxylates. Both chemoreceptors are able to trigger a chemotactic response of E. coli cells to the specific ligands. A H. titanicae htc1 mutant has reduced chemotaxis toward benzoate, and is complemented upon expression of the corresponding receptor. Both chemoreceptors have a Cache-type sensor domain, double (Htc1) or single (Htc2), and their ability to bind aromatic compounds is reported here for the first time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.