Abstract

Colloidal silicon nanocrystals (SiNCs) have garnered significant interest in optoelectronics and biomedical applications. Direct arylation provides pathways to enhance the solution processability of particles and manipulate the photophysical and electronic properties of SiNCs. Unfortunately, existing methods employed to prepare aryl-functionalized SiNCs are based on organometallic coupling or transition-metal-catalyzed strategies, which require metal-based reagents for preactivation or the precursors and complicated post-treatment processes for product purification. Herein, we demonstrate a metal-free method that directly functionalizes SiNCs with aryl-based ligands. We design a series of benzyne derivatives formed from the thermal cyclization of predesigned alkynes, allowing efficient arylation on hydride-terminated silicon surfaces under mild conditions. These aryl-functionalized SiNCs exhibit strong blue emissions with nanosecond-scaled decay, suggesting the formation of a new radiative recombination channel on SiNC surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.