Abstract

Traditionally, excavation support systems are designed solely on the basis of satisfying limit equilibrium, using apparent earth pressure diagrams. Using this approach, the support system design becomes a function of the maximum anticipated earth pressure and is governed by overall structural stability as opposed to maximum allowable horizontal or vertical deformation. This approach produces a support system that is adequate with regards to preventing structural failure, but may result in excessive wall deformations and ground movements. This paper presents a design methodology that facilitates the sizing of all components of the excavation support system in such a way that limits the maximum lateral and vertical excavation-induced deformations. Based on the fundamental approach of the presented design methodology, structural and basal stability is guaranteed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.