Abstract
Despite promising research in modulated electron radiotherapy (MERT), an applicator to produce modulated electron beams and associated treatment planning software is still not commercially available. This work investigated an optimization process in treatment planning for the McGill few leaf electron collimator (FLEC) MERT delivery device. In addition, the possibility of combining MERT with photon fields was examined to investigate mixed beam radiotherapy. A FLEC direct aperture optimization (DAO) method, in which FLEC apertures and weights were iteratively optimized was created. The authors evaluated the performance of DAO against our previous technique for generating FLEC plans and with commercially available photon beam optimization algorithms using a basic target and organ at risk geometry. The authors applied the DAO technique on a sarcoma treatment to evaluate clinical parameters. Finally, the authors examined the merit of mixing the DAO generated FLEC electron fields with photon fields to improve the dosimetry of the sarcoma treatment. In relation to the alternative plans, the DAO generated sarcoma MERT plan was competitive in its ability to reduce the dose to OAR but weaker in its ability to highly conform the dose to the target volume. The addition of photon fields improved the quality of the MERT plan in terms of OAR sparing and target conformality. The DAO approach yielded deliverable FLEC-based MERT plans with a limited number of fields. The approach combined with photon optimization added flexibility, where the mutual benefits of each radiation type was used in unison to improve plan quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.