Abstract
The vascular endothelium is a primary target of cadmium (Cd) toxicity, but little is known regarding a potential mechanism whereby Cd may inhibit angiogenesis. Recent findings showing that Cd can disrupt cadherin-mediated cell–cell adhesion suggested that Cd might inhibit angiogenesis by altering the function of VE-cadherin, a molecule that is essential for angiogenesis. To address this issue, endothelial cells (ECs) were exposed to Cd in the presence of serum and subjected to angiogenesis-related cell migration and tube formation assays. Initial examination of cytotoxicity showed that ECs are rather resistant to the acute cytotoxic effects of Cd even at concentrations up to 1mM. However, 10μM Cd decreased migration of ECs. Cd concentrations of 500nM and greater significantly reduced organization of microvascular ECs into tubes. These antiangiogenic effects were evident even when ECs were preincubated with Cd and then washed to remove free Cd, indicating that Cd acted directly on the cells rather than on the extracellular matrix. Immunolocalization studies showed that Cd caused the redistribution of VE-cadherin from cell to cell contacts. These findings indicate that Cd acts in an angiostatic manner on ECs, and that this effect may involve alterations in the localization and function of VE-cadherin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.