Abstract
Human-induced environmental changes in temperature, light availability due to forest canopy management, nitrogen deposition, and land-use legacies can alter ecosystem processes such as litter decomposition. These influences can be both direct and indirect via altering the performance of understorey vegetation. To identify the direct and indirect effects of environmental changes on litter decomposition, we performed an experiment with standardised green and rooibos teas. The experiment was conducted in a temperate mixed deciduous forest, and treatments (temperature, light, and nitrogen) were applied to mesocosms filled with ancient and post-agricultural forest soil. Both green tea and rooibos teas were more rapidly decomposed in oligotrophic soil than in eutrophic soil. The direct effects of the treatments on litter decomposition varied among the two litter types, incubation times, and soil fertility groups. Warming and agricultural legacy had a negative direct effect on the decomposition of the green tea in the high soil fertility treatment during the early decomposition stage. In contrast, agricultural legacy had a positive direct effect on the decomposition of rooibos tea. Soil enriched with nitrogen had a negative direct effect on the decomposition of green tea in mesotrophic soil in the early decomposition stage and on rooibos tea in later stage. The indirect effects of the treatments were consistently negative, as treatments (especially the temperature and light treatments in the early decomposition stage) had a positive effect on plant cover, which negatively affected litter decomposition. Our results indicate that warming, increased nitrogen deposition, and land use legacy can directly stimulate the decomposition of labile litter on more fertile soils. Furthermore, warming and increased light had stronger positive direct effects on understorey herbaceous cover, which leads to slower decomposition rates, especially in more fertile soils. Therefore, the indirect effects of environmental changes related to the understorey layer on litter decomposition can be more important than their direct effects, thus should not be overlooked.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.