Abstract

Tap water samples (Assiut city, lie in the middle north of upper Egypt, approx. 370 km from Cairo, January–March, 2002) were taken from the eight sampling sites of different locations at Assiut city. The samples are analyzed to determine the total content of cadmium, copper, lead and zinc by differential pulse anodic stripping voltammetry (DPASV) while nickel and cobalt are determined by a new simple differential pulse adsorptive stripping voltammetry (DPAdSV), using dimethylglyoxime (DMG) as the complexing agent. This method uses sodium sulfite as the supporting electrolyte, which facilitates the removal of oxygen interference without the traditional necessity of purging with inert gas. The effect of various parameters was studied using DPASV (for Cd, Pb, Cu and Zn) and AdSV (for Ni and Co) methods. Subsequently, under the so found experimental conditions, the stability of calibration curves and the detection limits (μg/l) have been determined. The data achieved (for all metals utility) are comparable to those measured by the graphite furnace atomic absorption spectrophotometric (GF-AAS) method. The effects of the interferences between these metal ions have been investigated. Moreover, the effect of storage was discussed and the obtained results were compared favorably with standard official methods. Statistical analysis of the database exhibits applicability and the accuracy of the techniques. The results obtained from the two techniques (Voltammetry and GF-AAS) are in very good agreements in the most tap water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.