Abstract
Phenolic compounds that are naturally found in food samples are not only an important part of the human diet but also useful bioactive substances for health. Among these, para-coumaric acid (p-CA) has antibacterial and antioxidant properties and is used in many industrial processes. In this study, the novel MAX-phase material, Nb4AlC3, was successfully prepared and characterized in detail with various spectroscopic, microscopic and thermal techniques. The sensor performance of Nb4AlC3 modified glassy carbon electrode (Nb4AlC3@GCE) was evaluated and analytical parameters were calculated. Experimental conditions such as pH and amount of modifier were optimized with differential pulse voltammetry (DPV) measurements. The real samples analyses of lemon, apple and pomegranate were applied for determination of p-CA with Nb4AlC3@GCE sensing system under the optimized conditions. The accuracy was evaluated by spike/recovery and high-performance liquid chromatography analysis, which accounted for high accuracy of the Nb4AlC3@GCE sensing system. The limit of detection, limit of quantification, linear working range and relative standard deviation (%) of the Nb4AlC3@GCE sensing system were determined as 0.28 and 0.85 µmol/L, 0.8–80.0 µmol/L, 3.17 %, respectively. The results showed that the proposed sensing system has the high precision at lower concentration of p-CA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.