Abstract

AimThe air indoors has profound health implications as it can expose us to pathogens, allergens and particulates either directly or via contaminated surfaces. There is, therefore, an upsurge in marketing of air decontamination technologies, but with no proper validation of their claims. We addressed the gap through the construction and use of a versatile room‐sized (25 m3) chamber to study airborne pathogen survival and inactivation.Methods and ResultsHere, we report on the quantitative recovery and detection of an enveloped (Phi6) and a non‐enveloped bacteriophage (MS2). The two phages, respectively, acted as surrogates for airborne human pathogenic enveloped (e.g., influenza, Ebola and coronavirus SARS‐CoV‐2) and non‐enveloped (e.g., norovirus) viruses from indoor air deposited directly on the lawns of their respective host bacteria using a programmable slit‐to‐agar air sampler. Using this technique, two different devices based on HEPA filtration and UV light were tested for their ability to decontaminate indoor air. This safe, relatively simple and inexpensive procedure augments the use of phages as surrogates for the study of airborne human and animal pathogenic viruses.ConclusionsThis simple, safe and relatively inexpensive method of direct recovery and quantitative detection of viable airborne phage particles can greatly enhance their applicattion as surrogates for the study of vertebrate virus survival in indoor air and assessment of technologies for their decontamination.Significance and Impact of the StudyThe safe, economical and simple technique reported here can be applied widely to investigate the role of indoor air for virus survival and transmission and also to assess the potential of air decontaminating technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.