Abstract

Direct and phonon-assisted (PA) indirect Auger and radiative recombination lifetime in HgCdTe, InAsSb, and InGaAs is calculated and compared under different lattice temperatures and doping concentrations. Using the Green's function theory, the electron self energy computed from the electron-phonon interaction is incorporated into the quantum-mechanical expressions of Auger and radiative recombination, which renders the corresponding minority carrier lifetime in the materials due to both direct and PA indirect processes. Specifically, the results of two pairs of materials, namely, InAs0.91Sb0.09, Hg0.67Cd0.33Te and In0.53Ga0.47As, Hg0.38Cd0.62Te with cutoff wavelengths of 4 μm and 1.7 μm at 200 K and 300 K, respectively, are presented. It is shown that for InAs0.91Sb0.09 and Hg0.67Cd0.33Te, when the lattice temperature falls below 250 K the radiative process becomes the limiting factor of carrier lifetime in both materials at an n-type doping of 1015 cm−3, while at a constant temperature of 200 K, a high n...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call