Abstract

UV254 photolysis has increasingly been utilized for disinfection of water-born pathogens in wastewater. During disinfection, wastewater-derived trace organic contaminants, such as pharmaceuticals and personal care products (PPCPs), may be subjected to direct photolysis and indirect photolysis sensitized by wastewater constituents such as nitrite (NO2-). Herein, we reported the direct photolysis and NO2--sensitized indirect photolysis of four phenolic contaminants commonly observed in wastewaters (i.e., bisphenol A (BPA), acetaminophen (ATP), salbutamol (SAL), and 2,4-dihydroxybenzophenone (BP1)). Spectroscopic characterization and quantum yield measurement were carried out to evaluate the photochemical reactivity of these phenolic compounds. In NO2--sensitized photolysis, the relative contribution of direct and indirect photolysis was quantified by light screening factor calculation and radical quenching studies. The experimental results highlight the important roles of HO˙ and NO2˙ in the NO2--sensitized photolysis of phenolic compounds. A series of intermediate products, including hydroxylated, nitrated, nitrosated, dimerized, and alkyl chain cleavage products, were identified by solid phase extraction (SPE) combined with high-resolution mass spectrometry (HRMS) analyses. On the basis of identified products, the underlying mechanisms and transformation pathways for NO2--sensitized photolysis of these phenolic compounds were elucidated. The second-order rate constants of BPA, SAL, BP1 with NO2˙ were calculated to be 2.25 × 104, 1.35 × 104 and 2.44 × 104 M-1 s-1, respectively, by kinetic modeling. Suwanee River natural organic matter (SRNOM) played complex roles in the direct and NO2--sensitized photolysis of phenolic compounds by serving as a photosensitizer, light screening and radical quenching agent. Wastewater constituents, such as NO3- and EfOM, could accelerate direct and NO2--sensitized photolysis of BPA, SAL, and BP1 in the wastewater matrix. Our results suggest that NO2- at the WWTP effluent-relevant level can sensitize the photolysis of effluent-derived phenolic contaminants during the UV254 disinfection process; however, the formation of potentially carcinogenic and mutagenic nitrated/nitrosated derivatives should be scrutinized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.