Abstract

In this work we derive the structural properties of the Collocation coefficient matrix associated with the Dirichlet–Neumann map for Laplace’s equation on a square domain. The analysis is independent of the choice of basis functions and includes the case involving the same type of boundary conditions on all sides, as well as the case where different boundary conditions are used on each side of the square domain. Taking advantage of said properties, we present efficient implementations of direct factorization and iterative methods, including classical SOR-type and Krylov subspace (Bi-CGSTAB and GMRES) methods appropriately preconditioned, for both Sine and Chebyshev basis functions. Numerical experimentation, to verify our results, is also included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.