Abstract

Abstract The boundary value problem for the Helmholtz equation in the m-dimensional free space is considered. The problem is reduced to the Lippmann–Schwinger integral equation over the inhomogeneity domain. The operator of the integral equation is shown to be an invertible Fredholm operator. The inverse coefficient problem is considered. An application of the two-step method reduces the inverse problem to the source-type integral equation with a smooth kernel. Special classes of solutions to this equation are introduced. The uniqueness of a solution to the integral equation of the first kind is proved in the defined function classes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.