Abstract
In this paper, explicit solutions of a class of generalized space-time fractional Cauchy problems with time-variable coefficients are given. The representation of a solution involves kernels given by convergent infinite series of fractional integro-differential operators, which can be extensively and efficiently applied for analytic and computational goals. Time-fractional operators of complex orders with respect to a given function are used. Further, we study inverse Cauchy problems of finding time dependent coefficients for fractional wave and heat type equations, which involve the explicit representation of the solution of the direct Cauchy problem and a recent method to recover variable coefficients for the considered inverse problems. Concrete examples and particular cases of the obtained results are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.