Abstract
A complete and detailed theoretical investigation of the main processes involved in the controversial detection and quantification of carrier multiplication (CM) is presented, providing a coherent and comprehensive picture of excited state relaxation in InAs nanocrystals (NCs). The observed rise and decay times of the 1S transient bleach are reproduced, in the framework of the Auger model, using an atomistic semiempirical pseudopotential method, achieving excellent agreement with experiment. The CM time constants for small core-only and core/shell nanocrystals are obtained as a function of the excitation energy, assuming an impact-ionization-like process. The resulting lifetimes at energies close to the observed CM onset are consistent with the upper limits deduced experimentally from PbSe and CdSe samples. Most interestingly, as the Auger recombination lifetimes calculated for charged excitons are found to be of a similar order of magnitude to those computed for biexcitons, both species are expected to exhibit the fast decay component in NC population dynamics so far attributed exclusively to the presence of biexcitons and therefore identified as the signature of CM occurrence in high-energy low-pump-fluence spectroscopic studies. However, the ratio between trions and biexcitons time constants is found to be larger than the typical experimental accuracy. It is therefore concluded that, in InAs NCs, it should be experimentally possible to discriminate between the two species and that the origin of the observed discrepancies in CM yields is unlikely to lay in the presence of charged excitons.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.