Abstract

In this article, two radial basis functions based collocation schemes, differentiated and integrated methods (DRBF and IRBF), are extended to solve a class of nonlinear fractional initial and boundary value problems. Before discretization, the nonlinear problem is linearized using generalized quasilinearization. An interesting proof via generalized monotone quasilinearization for the existence and uniqueness for fractional order initial value problem is given. This convergence analysis also proves quadratic convergence of the generalized quasilinearization method. Both the schemes are compared in terms of accuracy and convergence and it is found that IRBF scheme handles inherent RBF ill-condition better than corresponding DRBF method. Variety of numerical examples are provided and compared with other available results to confirm the efficiency of the schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.