Abstract

Disease dynamics are governed by variation of individuals, species, and environmental conditions across space and time. In some cases, an alternate reservoir host amplifies pathogen loads and drives disease transmission to less competent hosts in a process called pathogen spillover. Spillover is frequently associated with multi-host disease systems where a single species is more tolerant of infection and more competent in pathogen transmission compared to other hosts. Pathogen spillover must be driven by biotic factors, including host and community characteristics, yet biotic factors interact with the abiotic environment (e.g., temperature) to create disease. Despite its fundamental role in disease dynamics, the influence of the abiotic environment on pathogen spillover has seldom been examined. Improving our understanding of disease processes such as pathogen spillover hinges on disentangling the effects of interrelated biotic and abiotic factors over space and time. We applied 10yr of fine-scale microclimate, disease, and tree community data in a path analysis to investigate the relative influence of biotic and abiotic factors on pathogen spillover for the emerging infectious forest disease sudden oak death (SOD). Disease transmission in SOD is primarily driven by the reservoir host California bay laurel, which supports high foliar pathogen loads that spillover onto neighboring oak trees and create lethal canker infections. The foliar pathogen load and susceptibility of oaks is expected to be sensitive to forest microclimate conditions. We found that biotic factors of pathogen load and tree diversity had relatively stronger effects on pathogen spillover compared to abiotic microclimate factors, with pathogen load increasing oak infection and tree diversity reducing oak infection. Abiotic factors still had significant effects, with greater heat exposure during summer months reducing pathogen loads and optimal pathogen conditions during the wet season increasing oak infection. Our results offer clues to possible disease dynamics under future climate change where hotter and drier or warmer and wetter conditions could have opposing effects on pathogen spillover in the SOD system. Disentangling direct and indirect effects of biotic and abiotic factors affecting disease processes can provide key insights into disease dynamics including potential avenues for reducing disease spread and predicting future epidemics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.