Abstract
The rapid increase in atmospheric CO2 concentrations (Ca ) has resulted in extensive research efforts to understand its impact on terrestrial ecosystems, especially carbon balance. Despite these efforts, there are relatively few data comparing net ecosystem exchange of CO2 between the atmosphere and the biosphere (NEE), under both ambient and elevated Ca . Here we report data on annual sums of CO2 (NEE(net) ) for 19 years on a Chesapeake Bay tidal wetland for Scirpus olneyi (C3 photosynthetic pathway)- and Spartina patens (C4 photosynthetic pathway)-dominated high marsh communities exposed to ambient and elevated Ca (ambient + 340 ppm). Our objectives were to (i) quantify effects of elevated Ca on seasonally integrated CO2 assimilation (NEE(net) = NEE(day) + NEE(night) , kg C m(-2) y(-1) ) for the two communities; and (ii) quantify effects of altered canopy N content on ecosystem photosynthesis and respiration. Across all years, NEE(net) averaged 1.9 kg m(-2) y(-1) in ambient Ca and 2.5 kg m(-2) y(-1) in elevated Ca , for the C3 -dominated community. Similarly, elevated Ca significantly (P < 0.01) increased carbon uptake in the C4 -dominated community, as NEE(net) averaged 1.5 kg m(-2) y(-1) in ambient Ca and 1.7 kg m(-2) y(-1) in elevated Ca . This resulted in an average CO2 stimulation of 32% and 13% of seasonally integrated NEE(net) for the C3 - and C4 -dominated communities, respectively. Increased NEE(day) was correlated with increased efficiencies of light and nitrogen use for net carbon assimilation under elevated Ca , while decreased NEE(night) was associated with lower canopy nitrogen content. These results suggest that rising Ca may increase carbon assimilation in both C3 - and C4 -dominated wetland communities. The challenge remains to identify the fate of the assimilated carbon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.