Abstract
Southeast Asia is one of the largest biomass burning (BB) source regions in the world. In order to promote our understanding of BB aerosol characteristics and environmental impacts, this study investigated the emission, composition, evolution, radiative effects, and feedbacks of BB aerosols from Mainland Southeast Asia during 15 March to 15 April 2019 by using an online-coupled regional chemistry/aerosol-climate model RIEMS-Chem. Model results are compared against a variety of ground and vertical observations, indicating a generally good model performance for meteorology, aerosol chemical compositions, and aerosol optical properties. It is found that BB aerosols contributed significantly to regional particulate matter (PM), accounting for up to 90 % of the near-surface PM2.5, BC, and OC concentrations over the BB source regions of north Mainland Southeast Asia and for approximately 30–70 % over wide downwind areas including most areas of southwest China and portions of south China. At the top of atmosphere (TOA), BB aerosols exerted a positive all-sky radiative effect (DREBB) up to 25 W/m2 over north Vietnam and south China, a negative DREBB up to −10 W/m2 over Myanmar, western Thailand, and southwest China. Meanwhile, the indirect radiative effect (IREBB) was consistently negative, with the maximum of −10 W/m2 over downwind areas with cloud coverage, e.g., from north Vietnam to most of south China. The subregional (95–125°E and 10–30°N) and period mean DREBB and IREBB at TOA were estimated to be 0.69 W/m2 and − 0.63 W/m2, respectively, leading a total radiative effect (TREBB) of 0.06 W/m2 at TOA. The radiative effects of BB aerosols led to decreases in sensible and latent heat fluxes, near-surface temperature, PBL height, and wind speed of 6.0 Wm−2, 9.0 Wm−2, 0.26 °C, 38.7 m, and 0.1 m/s, respectively, accompanied with an increase in RH of 1.9 %, averaged over the subregion and the study period. The accumulated precipitation during the study period was apparently reduced by BB aerosols from east Thailand to south China, with the maximum reduction up to 14 cm (exceeding 40 %) over north Vietnam and south China. TREBB tended to increase mean near-surface PM2.5 and its component concentrations, with the maximum percentage increase up to 24 % over the BB source regions of north Mainland Southeast Asia, resulting from the combined effects of dynamic and chemical feedbacks. DREBB generally dominated over IREBB in the feedback-induced PM2.5 concentration changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.