Abstract
Quantum-dot (QD)-labeled hydrophilic molecularly imprinted polymer (MIP) microparticles were prepared for direct and highly selective optosensing of an antibiotic drug (i.e., tetracycline (Tc)) in pure bovine/goat milks and bovine/porcine serums. "Living" CdTe QD-SiO2 composite microparticles with alkyl bromide groups on their surfaces were first obtained via the one-pot sol-gel reaction, and they were subsequently grafted with a Tc-imprinted polymer layer and poly(glyceryl monomethacrylate) brushes via the successive surface-initiated atom transfer radical polymerizations. The resulting MIP microparticles with QD labeling and hydrophilic polymer brushes could function properly in biological samples and showed obvious template-binding-induced fluorescence quenching, which make them a useful fluorescent chemosensor with limits of detection down to 0.14 μM in complex biological media. Moreover, a facile and effective approach was developed based on a newly derived equation to eliminate the false positives of the fluorescent chemosensor and provide it with wider linear detection concentration ranges in comparison with those obtained using the generally adopted Stern-Volmer equation. Furthermore, the fluorescent MIP chemosensor was also successfully applied for directly, sensitively, selectively, and accurately quantifying Tc in biological media, and the average recoveries were in the range of 95%∼105% even when several other drugs and the fluorescently interfering chlortetracycline were present in the samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.