Abstract
The analysis of comprehensive chemical reactions mechanisms, parameter estimation techniques, and variational chemical data assimilation applications require the development of efficient sensitivity methods for chemical kinetics systems. The new release (KPP-1.2) of the kinetic preprocessor (KPP) contains software tools that facilitate direct and adjoint sensitivity analysis. The direct-decoupled method, built using BDF formulas, has been the method of choice for direct sensitivity studies. In this work, we extend the direct-decoupled approach to Rosenbrock stiff integration methods. The need for Jacobian derivatives prevented Rosenbrock methods to be used extensively in direct sensitivity calculations; however, the new automatic and symbolic differentiation technologies make the computation of these derivatives feasible. The direct-decoupled method is known to be efficient for computing the sensitivities of a large number of output parameters with respect to a small number of input parameters. The adjoint modeling is presented as an efficient tool to evaluate the sensitivity of a scalar response function with respect to the initial conditions and model parameters. In addition, sensitivity with respect to time-dependent model parameters may be obtained through a single backward integration of the adjoint model. KPP software may be used to completely generate the continuous and discrete adjoint models taking full advantage of the sparsity of the chemical mechanism. Flexible direct-decoupled and adjoint sensitivity code implementations are achieved with minimal user intervention. In a companion paper, we present an extensive set of numerical experiments that validate the KPP software tools for several direct/adjoint sensitivity applications, and demonstrate the efficiency of KPP-generated sensitivity code implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.