Abstract
The size-dependent wettability of sessile water droplets is an important matter in wetting science. Although extensive studies have explored this problem, it has been difficult to obtain empirical data for microscale sessile droplets at a wide range of diameters because of the flaws resulting from evaporation and insufficient imaging resolution. Herein, we present the size-dependent quantitative change of wettability by directly visualizing the three phase interfaces of droplets using a cryogenic-focused ion beam milling and SEM-imaging technique. With the fundamental understanding of the formation pathway, evaporation, freezing, and contact angle hysteresis for sessile droplets, microdroplets with diameters spanning more than three orders of magnitude on various metal substrates were examined. Wetting nature can gradually change from hydrophobic at the hundreds-of-microns scale to super-hydrophobic at the sub-μm scale, and a nonlinear relationship between the cosine of the contact angle and contact line curvature in microscale water droplets was demonstrated. We also showed that the wettability could be further tuned in a size-dependent manner by introducing regular heterogeneities to the substrate.
Highlights
We have selected cryo-FIB/SEM as a model system to investigate the size-dependent wetting behavior of microscale sessile water droplets
We showed that the contact angles of the microscale sessile droplets significantly changed in a size-dependent manner, and the super-hydrophobic nature of droplets that are only a few micrometers in diameter was directly imaged for the first time
After the samples were submerged into liquid nitrogen slush for approximately 1 s, we directly transported them into a high-vacuum sample preparation chamber to minimize the possible formation of condensed droplets
Summary
We have selected cryo-FIB/SEM as a model system to investigate the size-dependent wetting behavior of microscale sessile water droplets. We showed that the contact angles of the microscale sessile droplets significantly changed in a size-dependent manner, and the super-hydrophobic nature of droplets that are only a few micrometers in diameter was directly imaged for the first time. These results were discussed with several well-established theoretical models. By introducing a nanopattern to change substrate topology, we demonstrated that the degree of anisotropic wetting depends on droplet size
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.