Abstract
Hepatocytes were isolated from human fetal liver in order to analyze the direct effects of growth factors and hormones on human hepatocyte proliferation and function. Mechanical fragmentation and then dissociation of fetal liver tissue with a collagenase/dispase mixture resulted in high yield and viability of hepatocytes. Hepatocytes were selected in arginine-free, ornithine-supplemented medium and defined by morphology, albumin production and ornithine uptake into cellular protein. A screen of over twenty growth factors, hormones, mitogenic agents and crude organ and cell extracts for effect on the stimulation of hepatocyte growth revealed that EGF, insulin, dexamethasone, and factors concentrated in bovine neural extract and hepatoma cell-conditioned medium supported attachment, maintenance and growth of hepatocytes on a collagen-coated substratum. The population of cells selected and defined as differentiated hepatocytes had a proliferative potential of about 4 cumulative population doublings. EGF and insulin synergistically stimulated DNA synthesis in the absence of other hormones and growth factors. Although neural extracts enhanced hepatocyte number, no effect on DNA synthesis of neural extracts or purified heparin-binding growth factors from neural extracts could be demonstrated in the absence or presence of defined hormones, hepatoma-conditioned medium or serum. Hepatoma cell-conditioned medium had the largest impact on both hepatocyte cell number and DNA synthesis under all conditions. Dialyzed serum protein (1 mg/ml) at 10 times higher protein concentration had a similar effect to hepatoma cell-conditioned medium (100 micrograms/ml). The results suggest that hepatoma cell conditioned medium may be a concentrated and less complicated source than serum for purification and characterization of additional normal hepatocyte growth factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.