Abstract
The orientation control of liquid crystal (LC) molecular on the polyimide film has been necessary to fabricate LC devices. Nano-rubbing by atomic force microscope (AFM) has been proposed as the one of methods to control it precisely. In the method, a thin polyimide film was rubbed by a sharpened AFM probe-tip with relatively strong load force. However, the method has some drawbacks; the frictional wear of AFM probe-tip and the difficulty of reorientation after rubbing. In this paper, we have proposed the orientation control of LC on the polyimide film and using direct AFM nano-rubbing method with weak load forces. The change of LC alignment was quantitatively observed by a polarization microscope and birefringence-contrast scanning near-field optical microscope. The effect of scanning density was strong for azimuth angle but the effect of the scanning velocity was weak for both retardation and azimuth angle. An optical switching device was developed utilized isotropic-nematic phase change of liquid crystal which was rubbed in the grating pattern with methyl red dying, and the optical device was operated at the frequency of 0.5Hz. As a result, The proposed method had an effective method to fabricate novel liquid crystal optical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.