Abstract
Large-scale deployment of negative emissions technologies (NETs) that permanently remove CO2 from the atmosphere is now considered essential for limiting the global temperature increase to less than 2°C by the end of this century. One promising NET is direct air capture (DAC), a technology that employs engineered chemical processes to remove atmospheric carbon dioxide, potentially at the scale of billions of metric tons per year. This review highlights one of the two main approaches to DAC based on aqueous solvents. The discussion focuses on different aspects of DAC with solvents, starting with the fundamental chemistry that includes the chemical species and reactions involved and the thermodynamics and kinetics of CO2 binding and release. Chemical engineering aspects are also discussed, including air-liquid contactor design, process development, and technoeconomic assessments to estimate the cost of the DAC technologies. Various solvents employed in DAC are reviewed, from aqueous alkaline solutions (NaOH, KOH) to aqueous amines, amino acids, and peptides, along with different solvent regeneration methods, from the traditional thermal swinging to the more exploratory carbonate crystallization with guanidines or electrochemical methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual Review of Chemical and Biomolecular Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.