Abstract

AbstractSequestration of CO2, either from gas mixtures or directly from air (direct air capture, DAC), could mitigate carbon emissions. Here five materials are investigated for their ability to adsorb CO2 directly from air and other gas mixtures. The sorbents studied are benchmark materials that encompass four types of porous material, one chemisorbent, TEPA‐SBA‐15 (amine‐modified mesoporous silica) and four physisorbents: Zeolite 13X (inorganic); HKUST‐1 and Mg‐MOF‐74/Mg‐dobdc (metal–organic frameworks, MOFs); SIFSIX‐3‐Ni, (hybrid ultramicroporous material). Temperature‐programmed desorption (TPD) experiments afforded information about the contents of each sorbent under equilibrium conditions and their ease of recycling. Accelerated stability tests addressed projected shelf‐life of the five sorbents. The four physisorbents were found to be capable of carbon capture from CO2‐rich gas mixtures, but competition and reaction with atmospheric moisture significantly reduced their DAC performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.