Abstract

Recent studies have reported that crustacean age determination is possible. We applied a direct ageing method (i.e. transverse cross sectioning of gastric ossicles) to a subtropical freshwater crayfish (Cherax quadricarinatus) sourced from an aquaculture population. Growth mark periodicity and the potential for chronological depositions were investigated by staining C. quadricarinatus with calcein and examining their ossicles a year later. Pterocardiac ossicles were superior to other ageing structures (i.e. other ossicles and eyestalks) and produced repeatable between-reader counts (87% were corroborated and 13% varied by ±1). C. quadricarinatus size-at-age data (for an aquaculture population) was described by a von Bertalanffy growth equation (L ∞ = 32 mm occipital carapace length; K = 0.64; t 0 = –0.18; R2 = 0.81). Ossicular growth marks did not correspond to moult history. The calcein stain was retained over an annual cycle comprising multiple moults, demonstrating that pterocardiac ossicles retain chronological information. The maximum age (3+) corroborated other indirectly-obtained longevity estimates for C. quadricarinatus. Multiple lines of evidence indicate that the growth marks in C. quadricarinatus ossicles are probably deposited annually during winter. The ability to extract age information from subtropical decapods provides substantial opportunities for advancing fisheries and conservation research globally, but further research is needed to provide a definitive validation and elucidate the mechanism governing the accrual of ossicular growth marks.

Highlights

  • Age information is important for calculating growth, mortality and productivity [1] and is important for both fisheries and conservation management [2,3]

  • Live C. quadricarinatus were sourced from a commercial aquaculture facility (Cherax Park Aquaculture Farm in Theebine, Queensland)–where they are reared in outdoor ponds–before

  • Direct Age Determination of C. quadricarinatus being transported to Southern Cross University (Lismore, New South Wales) on April 26 2013

Read more

Summary

Introduction

Age information is important for calculating growth, mortality and productivity [1] and is important for both fisheries and conservation management [2,3]. Substantial research efforts have focused on developing direct age determination methodologies for aquatic species. Analyses of sequentially-deposited growth marks in calcified.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.