Abstract
In this paper, a direct adaptive neural network control algorithm based on the backstepping technique is proposed for a class of uncertain nonlinear discrete-time systems in the strict-feedback form. The neural networks are utilized to approximate unknown functions, and a stable adaptive neural network controller is synthesized. The fact that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded is proven and the tracking error can converge to a small neighborhood of zero by choosing the design parameters appropriately. Compared with the previous research for discrete-time systems, the proposed algorithm improves the robustness of the systems. A simulation example is employed to illustrate the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.