Abstract
This paper aims to propose a stable fuzzy wavelet neural-based adaptive power system stabilizer (SFWNAPSS) for stabilizing the inter-area oscillations in multi-machine power systems. In the proposed approach, a self-recurrent Wavelet Neural Network (SRWNN) is applied with the aim of constructing a self-recurrent consequent part for each fuzzy rule of a Takagi-Sugeno-Kang (TSK) fuzzy model. All parameters of the consequent parts are updated online based on Direct Adaptive Control Theory (DACT) and employing a back-propagation-based approach. The stabilizer initialization is performed using an approach based on genetic algorithm (GA). A Lyapunov-based adaptive learning rates (LALRs) algorithm is also proposed in order to speed up the stabilization rate, as well as to guarantee the convergence of the proposed stabilizer. Therefore, due to having a stable powerful adaptation law, there is no requirement to use any identification process. Kundur's four-machine two-area benchmark power system and six-machine three-area power system are used with the aim of assessing the effectiveness of the proposed stabilizer. The results are promising and show that the inter-area oscillations are successfully damped by the SFWNAPSS. Furthermore, the superiority of the proposed stabilizer is demonstrated over the IEEE standard multi-band power system stabilizer (MB-PSS), and the conventional PSS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.