Abstract

In this work, we propose a novel controller based on a simple adaptive controller methodology and model predictive control (MPC) to generate and track trajectories of a spacecraft in the vicinity of asteroids. The control formulation is based on using adaptive control as a feedback controller and MPC as a feed-forward controller. The spacecraft system model, asteroid shape and inertia are assumed to be unknown, with the exception of the estimated total mass and angular velocity of the asteroid. The MPC is used to generate feed-forward trajectories and control input using only the mass and angular velocity of the asteroid combined with obstacle avoidance constraints. However, since the control input from MPC is calculated using only an approximated model of the asteroid, it fails to control the spacecraft in the presence of disturbances due to the asteroid’s irregular gravitational field. Hence, we propose an adaptive controller in conjunction with MPC to handle unknown disturbances. The numerical results presented in this work show that the novel control system is able to handle unknown disturbances while generating and tracking sub-optimal trajectories better than adaptive control or MPC solely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.