Abstract
In this paper, a simple model-free controller for electrically driven robot manipulators is presented using function approximation techniques (FAT) such as Legendre polynomials (LP) and Fourier series (FS). According to the orthogonal functions theorem, LP and FS can approximate nonlinear functions with an arbitrary small approximation error. From this point of view, they are similar to fuzzy systems and can be used as controller to approximate the ideal control law. In comparison with fuzzy systems and neural networks, LP and FS are simpler and less computational. Moreover, there are very few tuning parameters in LP and FS. Consequently, the proposed controller is less computational in comparison with fuzzy and neural controllers. The case study is an articulated robot manipulator driven by permanent magnet direct current (DC) motors. Simulation results verify the effectiveness of the proposed control approach and its superiority over neuro-fuzzy controllers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.