Abstract

This paper presents a new Takagi-Sugeno-Kang fuzzy Echo State Neural Network (TSKFESN) structure to design a direct adaptive control for uncertain SISO nonlinear systems. The proposed TSKFESN structure is based on the echo state neural network framework containing multiple sub-reservoirs. Each sub-reservoir is weighted with a TSK fuzzy rule. The adaptive law of the TSKFESN-based direct adaptive controller is derived by using a fractional-order sliding mode learning algorithm. Moreover, the Lyapunov stability criterion is employed to verify the convergence of the fractional-order adaptive law of the controller parameters. The evaluation of the proposed direct adaptive control scheme is verified using two case studies, the regulation problem of a torsional pendulum and the speed control of a direct current (DC) machine as a real-time application. The simulation and the experimental results show the effectiveness of the proposed control scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.