Abstract

Members of the fibroblast growth factor (FGF) family induce mesoderm formation in explants of Xenopus embryonic ectoderm (animal caps). Recent studies have been directed at determining signaling pathways downstream of the FGF receptor that are important in mesoderm induction. We have recently shown that a point mutation in the FGF receptor changing tyrosine 766 to phenylalanine (Y/F mutation) abolishes phospholipase C-gamma (PLC-gamma) activation in mammalian cells. To explore the role of PLC-gamma activation in FGF-stimulated mesoderm induction, we constructed two chimeric receptors, each consisting of the extracellular portion of the platelet-derived growth factor beta receptor, with one having the transmembrane and intracellular portions of the wild-type FGF receptor 1 (PR-FR wt) and the other having the corresponding region of the Y/F766 mutant FGF receptor 1 (PR-FR Y/F766). When expressed in Xenopus oocytes, only PR-FR wt was able to mediate PLC gamma phosphorylation, inositol-1,4,5-trisphosphate accumulation, and calcium efflux in response to platelet-derived growth factor stimulation. However, both receptors mediated mesoderm induction in Xenopus animal caps as measured by cap elongation, muscle-specific actin mRNA induction, and skeletal muscle formation. These results demonstrate that PLC gamma activation by the FGF receptor is not required for FGF-stimulated mesoderm induction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.