Abstract

We address the recent controversy over whether focused ultrasound (FUS) activates cortical neurons directly or indirectly by initially activating auditory pathways. We obtained two types of evidence that FUS can directly activate cortical neurons. The depth profile of the local field potential (LFP) in the barrel cortex of the rat in vivo indicated a generator was located within the cortical gray matter. The onset and peak latencies of the initial component p1 were 3.2 ± 0.25 ms (mean ± standard error of the mean) and 7.6 ± 0.12 ms, respectively, for the direct cortical response (DCR), 6.8 ± 0.40 and 14.3 ± 0.54 ms for the FUS-evoked LFP (4 MHz, 3.2 MPa, 50 or 300 µs/pulse, 1–20 pulses at 1 kHz) and 6.9 ± 0.51 and 15.8 ± 0.94 ms for the LFP evoked by 1-ms deflection of the C2 whisker projecting to the same area. The peak latency of the FUS p1 was statistically (t-test) longer than the DCR, but shorter than the whisker p1 at p < 0.005.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call