Abstract

The kinetics of the hydrogen abstraction reactions NCO + CH4 (R1) and NCO + C2H6 (R2) have been studied over a wide temperature range. The minimum energy paths (MEPs) were calculated at the MP2/cc-pVDZ level and single-point calculations were refined at the G3MP2 level. The rate constants for the title reactions were calculated using canonical variational transition state theory (CVT) with small-curvature tunneling (SCT) contributions. The fitted three-parameter formulae are k 1 = 2.52 × 10−22 T 3.46 exp(2466/T) and k 2 = 9.8 × 10−22 T 3.2 exp(411.8/T) cm3 molecule−1 s−1 for (R1) and (R2), respectively. The calculated rate constants were found to be in good agreement with the available experimental data. Deuterium kinetic isotope effects were also investigated. Both reactions show a significant kinetic isotope effect in the low-temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.