Abstract
We describe a method that uses direct 13C-detection for measuring rotating-frame carbonyl ( 13CO) relaxation rates to describe protein functional dynamics. Key advantages of method include the following: (i) unique access to 13CO groups that lack a scalar-coupled 15N– 1H group; (ii) insensitivity to 15N/ 1H exchange-broadening that can derail 1H-detected 15N and HNCO methods; (iii) avoidance of artifacts caused by incomplete water suppression. We demonstrate the approach for both backbone and side-chain 13CO groups. Accuracy of the 13C-detected results is supported by their agreement with those obtained from established HNCO-based approaches. Critically, we show that the 13C-detection approach provides access to the 13CO groups of functionally important residues that are invisible via 1H-detected HNCO methods because of exchange-broadening. Hence, the 13C-based method fills gaps inherent in canonical 1H-detected relaxation experiments, and thus provides a novel complementary tool for NMR studies of biomolecular flexibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.