Abstract

Collective excitation of Dirac plasmons in graphene and topological insulators has opened new possibilities of tunable plasmonic materials ranging from THz to mid-infrared regions. Using time resolved Optical Pump-Terahertz Probe (OPTP) spectroscopy, we demonstrate the presence of plasmonic oscillations in bismuth telluride nanowires (Bi2Te3 NWs) after photoexcitation using an 800 nm pump pulse. In the frequency domain, the differential conductivity (Δσ = σpump on - σpump off) spectrum shows a Lorentzian response where the resonance frequency (ωp), attributed to surface plasmon oscillations, shifts with photogenerated carrier density (n) as . This dependence establishes the absorption of THz radiation by the Dirac surface plasmon oscillations of the charge carriers in the Topological Surface States (TSS) of Bi2Te3 NWs. Moreover, we obtain a modulation depth, tunable by pump fluence, of ∼40% over the spectral range of 0.5 to 2.5 THz. In addition, the time evolution of Δσ(t) represents a long relaxation channel lasting for more than 50 ps. We model the decay dynamics of Δσ(t) using coupled second order rate equations, highlighting the contributions from surface recombination as well as from trap mediated relaxation channels of the photoinjected carriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call