Abstract
We prove that a pair (F = vector sub-bundle of TM, its annihilator) yields an almost Dirac structure which is Dirac if and only if F is Lie integrable. Then a flat Ehresmann connection on a fiber bundle ξ yields two complementary, but not orthogonally, Dirac structures on the total space M of ξ. These Dirac structures are also Lagrangian sub-bundles with respect to the natural almost symplectic structure of the big tangent bundle of M. The tangent bundle in Riemannian geometry is discussed as particular case and the 3-dimensional Heisenberg space is illustrated as example. More generally, we study the Bianchi–Cartan–Vranceanu metrics and their Hopf bundles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.