Abstract
Low-temperature transport measurements in extreme pulsed magnetic fields generated by implosive flux compression techniques are challenging due to the short (micro-second) duration of the pulse, and consequent problems associated with pick-up and eddy current heating arising from the large d B/d t (peak value ∼10 9 T/s). For the `Dirac' series of experiments at Los Alamos, we have developed microlithographic processing techniques to fabricate thin coplanar microwave transmission lines (CTLs) directly onto semiconductor and superconductor samples. The thin metal reduces eddy current heating in the CTLs, allowing measurements at liquid-helium temperatures, while providing excellent electrical coupling to electrons in the sample. For samples with a conducting surface, a thin, robust insulating layer of Si 3N 4 was deposited before the CTLs to provide capacitive coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.