Abstract

We search a canonical basis of Dirac's observables for the classical Abelian Higgs model with fermions in the case of a trivial U(1) principal bundle. The study of the Gauss law first class constraint shows that the model has two disjoint sectors of solutions associated with two physically different phases. In the electromagnetic phase, the electromagnetic field remains massless: after the determination of the Dirac's observables we get that both the reduced physical Hamiltonian and Lagrangian are nonlocal. In the Higgs phase, the electromagnetic field becomes massive and in terms of Dirac's observables we get a local, but nonanalytic in the electric charge (or equivalently in the sum of the electromagnetic mass and of the residual Higgs field), physical Hamiltonian; however the associated Lagrangian is nonlocal. Some comments on the R-gauge-fixing, the possible elimination of the residual Higgs field and on the Nielsen–Olesen vortex solution close the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call