Abstract

We examine relationships between various quantization schemes for an electrically charged particle in the field of a magnetic monopole. Quantization maps are defined in invariant geometrical terms, appropriate to the case of nontrivial topology, and are constructed for two operator representations. In the first setting, the quantum operators act on the Hilbert space of sections of a nontrivial complex line bundle associated with the Hopf bundle, whereas the second approach uses instead a quaternionic Hilbert module of sections of a trivial quaternionic line bundle. We show that these two quantizations are naturally related by a bundle morphism and, as a consequence, induce the same phase-space star product. We obtain explicit expressions for the integral kernels of star-products corresponding to various operator orderings and calculate their asymptotic expansions up to the third order in the Planck constant . We also show that the differential form of the magnetic Weyl product corresponding to the symmetric ordering agrees completely with the Kontsevich formula for deformation quantization of Poisson structures and can be represented by Kontsevich’s graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.