Abstract

Noncommutative geometry may be an alternative way to quantum gravity. We study the influence of the space–time noncommutative parameter on the Dirac quasi-normal modes in the noncommutative Schwarzschild black hole space–times. In comparison to the commutative Schwarzschild black hole, the numerical results show that the oscillation frequencies and magnitude of the imaginary part of the Dirac quasi-normal modes will increase. However, it is found that the influence of the space–time noncommutative parameter on the Dirac quasi-normal modes is tiny and negligible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call