Abstract

ABSTRACTIn most introductory courses on electrodynamics, one is taught the electric charge is quantised but no theoretical explanation related to this law of nature is offered. Such an explanation is postponed to graduate courses on electrodynamics, quantum mechanics and quantum field theory, where the famous Dirac quantisation condition is introduced, which states that a single magnetic monopole in the Universe would explain the electric charge quantisation. Even when this condition assumes the existence of a not-yet-detected magnetic monopole, it provides the most accepted explanation for the observed quantisation of the electric charge. However, the usual derivation of the Dirac quantisation condition involves the subtle concept of an ‘unobservable’ semi-infinite magnetised line, the so-called ‘Dirac string,’ which may be difficult to grasp in a first view of the subject. The purpose of this review is to survey the concepts underlying the Dirac quantisation condition, in a way that may be accessible to advanced undergraduate and graduate students. Some of the discussed concepts are gauge invariance, singular potentials, single-valuedness of the wave function, undetectability of the Dirac string and quantisation of the electromagnetic angular momentum. Five quantum-mechanical and three semi-classical derivations of the Dirac quantisation condition are reviewed. In addition, a simple derivation of this condition involving heuristic and formal arguments is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.