Abstract

Artificial graphene is a recently realized, man-made nanosystem that exhibits graphene-like physics in a tunable setup. The system can be created by, e.g., positioning molecules in a triangular lattice on a metal surface. Here, we model finite flakes of artificial graphene on a real-space grid and calculate their single-electron properties as a function of the flake size and the strength of an external magnetic field. Our calculations reveal the gradual formation of Dirac cones as well as a self-similar Hofstadter butterfly as the flake size is increased. Moreover, the density of states qualitatively agrees with the experimental data with and without the magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.