Abstract

High-mobility graphene hosting massless charge carriers with linear dispersion provides a promising platform for electron optics phenomena. Inspired by the physics of dielectric optical micro-cavities where the photon emission characteristics can be efficiently tuned via the cavity shape, we study corresponding mechanisms for trapped Dirac fermionic resonant states in deformed micro-disk graphene billiards and directed emission from those. In such graphene devices a back-gate voltage provides an additional tunable parameter to mimic different effective refractive indices and thereby the corresponding Fresnel laws at the boundaries. Moreover, cavities based on single-layer and double-layer graphene exhibit Klein- and anti-Klein tunneling, respectively, leading to distinct differences with respect to dwell times and resulting emission profiles of the cavity states. Moreover, we find a variety of different emission characteristics depending on the position of the source where charge carriers are fed into the cavites. Combining quantum mechanical simulations with optical ray tracing and a corresponding phase-space analysis, we demonstrate strong confinement of the emitted charge carriers in the mid field of single-layer graphene systems and can relate this to a lensing effect. For bilayer graphene, trapping of the resonant states is more efficient and the emission characteristics do less depend on the source position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.