Abstract

We present the explicit form of the symplectic structure of anti-self-dual Yang-Mills (ASDYM) equations in Yang’s J- and K-gauges in order to establish the bi-Hamiltonian structure of this completely integrable system. Dirac’s theory of constraints is applied to the degenerate Lagrangians that yield the ASDYM equations. The constraints are second class as in the case of all completely integrable systems which stands in sharp contrast to the situation in full Yang-Mills theory. We construct the Dirac brackets and the symplectic 2-forms for both J- and K-gauges. The covariant symplectic structure of ASDYM equations is obtained using the Witten-Zuckerman formalism. We show that the appropriate component of the Witten-Zuckerman closed and conserved 2-form vector density reduces to the symplectic 2-form obtained from Dirac’s theory. Finally, we present the Backlund transformation between the J- and K-gauges in order to apply Magri’s theorem to the respective two Hamiltonian structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.