Abstract
We investigate the spectrum and the dispersion relation of the Schr\"odinger operator with point scatterers on a triangular lattice and a honeycomb lattice. We prove that the low-level dispersion bands have conic singularities near Dirac points, which are the vertices of the first Brillouin Zone. The existence of such conic dispersion bands plays an important role in various electronic properties of honeycomb-structured materials such as graphene. We then prove that for a honeycomb lattice, the spectra generated by higher-level dispersion relations are all connected so the complete spectrum consists of at most three bands. Numerical simulations for dispersion bands with various parameters are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.